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ML Models at deployment

Learning models are
R S . D i 5 deployed as part of larger
| System | systems.

Component Learning
1 Model
Systems address end

i | users’ requirements.
User’s Component | System’s G
> —_—
Request | 4 : Response
| i Users' requirements must
Component Component drive the design of the
2 3 systems.
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ML Models at deployment

Systems are composed of

e — | multiple components
i System '
Component Learning ;
1 Model | These components can
‘ impact the behavior of the
User's System’s learning models
Request | ' Response

Component
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ML Models at deployment

Learning models outputs

oo 5 can be inputs for other
| System | components
Component : : '
1 DCE
Systems’ outputs are
User’s Component system’s aggregations of the data
e g » processed by different
Request 4 : Outputs
| | components.
Component | Component
2 3
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Systems Design

Users’ requirements drive the design of the systems...




Systems Design

Software Design Decisions:

You have three learning models that predict Y.




Systems Design

Software Design Decisions:

You have three models that predict X.

Learning Accuracy
Model

Modell 88%
Model2 90%
Model3 98%
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Systems Design

Software Design Decisions:

You have three models that predict X.

Vode! Low latency requirement!

Modell 88% 3 secs
Model2 90% 4 secs < 3secs
Model3 98% 10 secs
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Systems Design

Software Design Decisions:

You have three models that predict X.

Learning Accuracy | Latency Resources
Model Demand

Modell 88% 3 secs .
Model2 90% 4 secs Medium COnStralnt resou rCES!

Model3 98% 10 secs High
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Systems Design

Software Design Decisions:

You have three models that predict X.

Model Demand
Which one should |

Modell 88% 3 secs 5
select:

Model2 90% 4 secs Medium

Model3 98% 10 secs High
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Systems Design

Software Design Decisions:

You have three models that predict X.

Learning Accuracy | Latency Resources
Model Demand
Which one should |

Modell 88% 3 secs SElECt?
Model2 90% 4 secs Medium
Model3 98% 10 secs High

System design
decisions...
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Systems Design

Systems’ design decisions change from system to system...




Systems Design

Systems’ design decisions change from system to system...

But we can identify common requirements between current ML-based
systems.




ML-based Systems and SOA

Maintainability
High availability
Scalability

Low latency

Data Ownership
Resource constraint environments

Transparency and monitoring




ML-based Systems and SOA

Service-oriented Architectures
(SOASs)

Maintainability
High availability
Scalability

User
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ML-based Systems and SOA

Service-oriented Architectures

SOA
Maintainability ( )

High availability —

Scalability

Modula C
Devaloprant Taam

Low latency

) ata Own erShip Madule A Madule B Madule C Dauerﬂ';:ﬁﬁraam @
Resource constraint environments @

Transparency and monitoring

Source: https://dev.to/suspirOn/soc-separation-of-concerns-5ak?7
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ML-based Systems and SOA

Service-oriented Architectures

- SOAs
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ML-based Systems and SOA

Service-oriented Architectures

SOAs
Maintainability | )

High availability
Scalability

o

(

——

User — User

Data Ownership Request ‘ Response

Resource constraint environments

Transparency and monitoring \ = )

|

Middleware Platforms
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ML-based Systems and SOA

Service-oriented Architectures
(SOASs)

Maintainability
High availability
Scalability

Data Ownership
Resource constraint environments

. . amazoncom
Transparency and monitoring

Source: https://www.divante.com/blog/10-companies-that-implemented-the-
microservice-architecture-and-paved-the-way-for-others
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ML-based Systems and DOA
Data-oriented Architectures (DOAs)
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ML-based Systems and DOA

Data-oriented Architectures (DOAs)

Maintainability Prioritise decentralisation

High availability
Scalability

Low latency

Data Ownership 3
Resource constraint environments

<?> @g I:
W =R g

Transparency and monitoring
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ML-based Systems and DOA

Data-oriented Architectures (DOAs)
Openness

Maintainability

High availability

Scalability

Low latency

Data Ownership

Resource constraint environments

Transparency and monitoring
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Water level monitoring project
at DeKUT (DSA 2022 - Arusha)
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Figure 7: Rainfall profile comparison to the water level profile Catchment test

Ewaso Nyiro River Source: https://en.wikipedia.org/wiki/Ewaso _Ng%27iro
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ML-based Systems and DOA

Water level monitoring project
at DeKUT (DSA 2022 - Arusha)
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ML-based Systems and DOA

- Water level monitoring project
at DeKUT (DSA 2022 - Arusha)
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ML-based Systems and DOA

Water level monitoring project
at DeKUT
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Water level monitoring project
at DeKUT

mDot - (sensor node)

| | Anomaly i
. | Data Collection | ! subscribes | Listener Detection |
| Component | i Component Component |
| . Openness f |
' S E writes |
' Web server

| | | Visualisation | !

— — i d |

Sublishes | MQTT Broker i : reads Component :

UNIVERSITY OF

CAMBRIDGE



ML-based Systems and DOA

Water level monitoring project
at DeKUT
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ML-based Systems and DOA

Decentralisation . . .
Water level monitoring project
at DeKUT

mot - (sensor node) Google Cloud latiorm g
| | Anomaly
| Data Collection | ! subscribes ! Listener Detection |
| Component | i Component Component i
| | Openness f
' S E writes i
' Web server
Visualisation | !
oublishes | MQTT Broker < reads Component

UNIVERSITY OF

CAMBRIDGE



ML-based Systems and DOA

Decentralisation . . .
Water level monitoring project

Preprocess data at the gateway at DeKUT
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Decentralisation . . .
Water level monitoring project

Preprocess data at the gateway at DeKUT
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ML-based Systems and DOA
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Real-world Machine Learning Systems: A survey
from a Data-Oriented Architecture Perspective

Christian Cabrera, Andrei Paleyes, Pierre Thodoroff, Neil D. Lawrence

With the upsurge of interest in artificial intelligence machine learning (ML)
algorithms, originally developed in academic environments, are now being
deployed as parts of real-life systems that deal with large amounts of
heterogeneous, dynamic, and high-dimensional data. Deployment of ML
methods in real life is prone to challenges across the whole system life-cycle
from data management to systems deployment, monitoring, and maintenance.
Data-Oriented Architecture (DOA) is an emerging software engineering
paradigm that has the potential to mitigate these challenges by proposing a set
of principles to create data-driven, loosely coupled, decentralised, and open
systems. However DOA as a concept is not widespread yet, and there is no
common understanding of how it can be realised in practice. This review
addresses that problem by contextualising the principles that underpin the DOA
paradigm through the ML system challenges. We explore the extent to which
current architectures of ML-based real-world systems have implemented the
DOA principles. We also formulate open research challenges and directions for
further development of the DOA paradigm.
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algorithms, originally developed in academic environments, are now being
deployed as parts of real-life systems that deal with large amounts of
heterogeneous, dynamic, and high-dimensional data. Deployment of ML
methods in real life is prone to challenges across the whole system life-cycle
from data management to systems deployment, monitoring, and maintenance.
Data-Oriented Architecture (DOA) is an emerging software engineering
paradigm that has the potential to mitigate these challenges by proposing a set
of principles to create data-driven, loosely coupled, decentralised, and open
systems. However DOA as a concept is not widespread yet, and there is no
common understanding of how it can be realised in practice. This review
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Few projects fully follow DOA principles.

Most of the solutions are centralized and
cloud based.

Databases, streams and message queues
enable the data first principle.

Distributed storage and computing
technologies for decentralisation.

Asynchronous communication for openness.
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