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Systems’ desigh decisions change from system to system...

But we can identify common requirements between
software systems.

Based on these commonalities we can define design
patterns and systems architectures.
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Systems Design

Systems in the age of the Internet

required:

* Separation of concerns
* High availability

* Scalability

* Low Latency

Service-oriented Architectures

(SOASs)
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Systems in the age of Al are data-  Service-oriented Architectures
driven: (SOAS)

« Data availability The Data Dichotomy:
* Data ownership

* Data traceability and monitoring ~ “While data-driven systems are
about exposing data, service-

. N oriented architectures are about

* Sustainability hiding data.” [1]

* Super-low latency requirements

[1] Stopford B., The Data Dichotomy: Rethinking the Way We Treat Data and Services. https://www.confluent.io/en-gb/blog/data-dichotomy-rethinking-the-way-we-treat-data-and-
services
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The Data Dichotomy:

“While data-driven systems are about exposing data, service-
oriented architectures are about hiding data.” [1]

We need to design systems prioritising data!

[1] Stopford B., The Data Dichotomy: Rethinking the Way We Treat Data and Services. https://www.confluent.io/en-gb/blog/data-dichotomy-rethinking-the-way-we-treat-data-and-
services
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Real-world Machine Learning Systems: A survey
from a Data-Oriented Architecture Perspective

Christian Cabrera, Andrei Paleyes, Pierre Thodoroff, Neil D. Lawrence

With the upsurge of interest in artificial intelligence machine learning (ML)
algorithms, originally developed in academic environments, are now being
deployed as parts of real-life systems that deal with large amounts of
heterogeneous, dynamic, and high-dimensional data. Deployment of ML
methods in real life is prone to challenges across the whole system life-cycle
from data management to systems deployment, monitoring, and maintenance.
Data-Oriented Architecture (DOA) is an emerging software engineering
paradigm that has the potential to mitigate these challenges by proposing a set
of principles to create data-driven, loosely coupled, decentralised, and open
systems. However DOA as a concept is not widespread yet, and there is no
common understanding of how it can be realised in practice. This review
addresses that problem by contextualising the principles that underpin the DOA
paradigm through the ML system challenges. We explore the extent to which
current architectures of ML-based real-world systems have implemented the
DOA principles. We also formulate open research challenges and directions for
further development of the DOA paradigm.
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Few projects fully follow DOA principles.
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Water level monitoring project at
DeKUT [1]
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[1] Kabi, Jason, and Ciira Maina. "Leveraging IoT and machine learning for improved monitoring of water resources-a case study of the upper ewaso nyiro river." 2021 IST-Africa
Conference (IST-Africa). IEEE, 2021.
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Water level monitoring
project at DeKUT [1]
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Water level monitoring
project at DeKUT [1]
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Water level monitoring
project at DeKUT [1]
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Water level monitoring
project at DeKUT [1]
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Decentralisation Water level monitoring
project at DeKUT [1]
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Facilitates data collection
processes.

Asynchronous communication User reads

fits better when manipulating g t/R \
large data sets. equest/ Response

The Data Medium is a shared
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The historical state of the
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DOA vs SOA
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Paleyes, Andrei, Christian Cabrera, and Neil D. Lawrence. "An empirical evaluation of flow based programming in the machine learning deployment context." Proceedings of the 1st International Conference on Al
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DOA vs SOA - Number of Affected Components
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DOA vs SOA - Cognitive Complexity
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DOA vs SOA - Maintainability Index
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DOA and Causality Analysis

Dataflow graphs as complete causal graphs

Andrei Paleyes*', Siyuan Guo*'?, Bernhard Schélkopf?, Neil D. Lawrence'
lDepartmem of Computer Science and Technology, University of Cambridge
2Max Planck Institute for Intelligent Systems
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Paleyes, Andrei, et al. "Dataflow graphs as complete causal graphs." 2023 IEEE/ACM 2nd International Conference on Al Engineering—Software Engineering for Al (CAIN). IEEE, 2023.
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DOA and Causality Analysis — Fault localisation
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DOA and Causality Analysis — I[dentifying data shifts
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Summary

* Systems design decisions change between systems, but these usually share
requirements.

* Similar requirements can be addressed following similar solutions.
* Data-driven systems demand to design systems that prioritise data.

* Data-Oriented Architectures is a useful paradigm to design data-driven
systems.

* The Data-First principle is particularly relevant for our data science pipelines.



Many thanks!
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